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INTRODUCTION

This project is to develop a robust computer aided diagnosis (CAD) system for mass detection
with high sensitivity and specificity in digitized mammograms. As listed in the Statement of
Work, the research scope in the second year of project is to improve and optimize detection
performance and classification generalizability.

BODY

Objective 1: to enhance the detection performance of stellate mass/distortion

Accomplishments:

A major problem in detecting stellate mass is that the mass region may be extended to
surrounding tissue area in mass segmentation due to the similarity of pixel intensity. Region
growing is widely used in mass segmentation. Some methods attempt to utilize shape
constraints in conventional region growing to regularize the segmented partitions. But they
didn’t take the local shape of spiculation and the connected area between adjacent objects
into account. In order to improve the detection performance of stellate mass/distortion, we
present a graph-based region growing method for segmenting masses in digital
mammograms. In the proposed algorithm, the procedure of region growing is represented as
a growing tree whose root is the selected seed. Active leaves, which have the ability to grow,
in the connection area between adjacent regions are deleted to stop growing, then separating
the adjacent regions while keeping the spiculation of masses. A complete procedure of
graph-based region growing algorithm is described in the attached paper. In summary, it has
following steps:

(1). Select a seed for region growing and define the seed as an active leafin T .

(2). At iteration i, every neighboring pixels (x, y) of active leaves in T, are checked. If they
are notin R,_, and satisfy |I(x,y)— M| < T,,, they are supposed to be in R;.

(3). Compute the number of the supposed active leaves |la| and dead leaves.

(4). Label the active leaves groups (G s) and calculate the size of active groups |G|

(5). If |G| < T, x (]la| +|id l), compute the number of the neighboring dead leaves [Isd| of the

, the active group is a hole (H ).

active groups. If |lsd | > T, x |G
(6). Compute PE for supposed active leaves in H. If PE>T, , the supposed active leaves

in the H are eliminated from R,.
(7). Continue the procedure, the algorithm stops when no active leaves are found.

Objective 2: to improve the performance and generalizability of classification.

Accomplishments:




The major difficulties of classification result from the great similarity in appearance between
mass and dense normal tissue, and the great variation in feature distribution of different masses.
From the classification perspective, the former requires more elaborate features to be extracted
for classification while the later means the classifier structure should be more flexible. In this
research, we focus on the exploration of new classification strategy with less effort on new
feature design.

1. Feature extraction

Seven features are used in this work for FP reduction. Due to the page limit, they are simply
listed as follows. More detailed definition can be found in the attached publications.
Morphological features: (i) Area; (ii) Circularity; (iii) Normalized deviation of radial length.
Intensity features of region: (i) Intensity variation; (ii) Mean intensity difference.

Intensity features of boundary: (i) Mean gradient of region boundary; (ii) Mean intensity
difference along region boundary.

2. Hybrid classification

There are several types of classifiers used in discrimination of masses from normal tissue
regions, such as decision tree, Bayes classifier, neural networks, linear discriminant analysis
(LDA), and quadratic classifiers. A common characteristics of current FP reduction schemes is
that a "hard" discriminant criteria is developed by training to evaluate each segmented suspicious
region. From the standpoint of region-based classification, it is reasonable, and the task of
classifier design is to find an optimal discriminant hyperplane in feature space. However, the
segmented FPs can not be reduced efficiently by a single "hard" decision classifier. With an
analysis of "hard" decision-making classification results, it can be found that the distribution of
FPs is quite different from case to case, generally less FPs for fatty breast and more FPs for
dense breast in which more mass-like regions are segmented. In other words, from the image-
based standpoint, the efficiency of classification strategy by means of "hard" decision criteria is
questionable. The proposed hybrid classification method takes two different decision-making
strategies as described below, where the current "hard" decision classifier is cascaded with a
"soft" decision classification with the objective to reduce FPs in the cases with multiple FPs
retained after the "hard" decision classification.

(1) "Hard" classification using a modified fuzzy decision tree method

The segmented regions are first classified using a modified fuzzy decision tree (MFDT) method.
It is a modification of our previously developed fuzzy binary decision tree (FBDT) method, in
which the classification decision at each tree node is made based on the region feature as well as
region size. The design of MFDT structure is based on an observation that the feature
distributions are statistically different for different mass size.

(2) "Soft" classification using committee decision method

The "hard" classification method is region-oriented. The thresholds at the decision nodes of
MFDT are selected by training to ensure a high detection sensitivity. However, at the mean time,
several FPs in each image may be produced especially for that with non-uniform high density
tissue. The "soft" classification strategy proposed is to reduce FPs by an image-based analysis
for selecting the best ones among the pre-classified candidate regions as the "real" masses. It is



performed by a committee decision method based on a simple premise that most features of a
mass should be top in individual feature ranking among all the candidate suspicious regions in a
single mammogram. The committee consists of six "experts", each provides a ranking list of the
suspicious regions with a likelihood to be a mass using a single feature except the feature "Area".
A region is decided by the committee to be a possible mass if it is ranked among top Ko (Ko<M)
by more than C "experts". Here M is the candidate region number.

A very detailed description of the proposed classification method and the comparative study of
false-positive reduction can be found in the attached papers.

Objective 3: systematic optimization of the CAD method

Accomplishments:

A training database containing 30 normal and 47 abnormal mammograms with totally 70 masses
was generated for fine tuning the parameters in each CAD module in mass detection system. An
FROC curve of detection on training database was obtained (see the attached paper). The
operating point of system is chosen to be at sensitivity TP=93% and false positive rate FP=3.1
per image. By analyzing the five masses missed in training at the operating point, two of them
are due to extremely small size (<4 mm) and lower contrast (<4.0); another two of them are on
the boundary of breast area; one is due to its great deviation of shape feature.

KEY RESEARCH ACCOMPLISHMENTS

1. A novel graph-based algorithm was proposed to segment stellate masses in mammograms
by separating the adjacent regions while keeping the spiculation of masses. It is helpful
for the improvement of stellate mass and distortion detection.

2. A hybrid "hard"-"soft" classification method was proposed, where the "hard" decision
classifier is cascaded with a "soft" decision classification with the objective to reduce
false-positives (FPs) in the cases with multiple FPs retained after the "hard" decision
classification. It has a much better performance and generalizability of classification.

3. A training database was generated for fine tuning the parameters of CAD system. An
FROC curve of CAD mass detection using training database was obtained.

REPORTABLE OUTCOMES

1. Presentation and/or proceedings paper

(a) Yong Chu, Lihua Li, and Robert A. Clark, “Graph-based Region Growing for Mass
Segmentation in Digital Mammography,” Proc. of SPIE Medical Imaging, 1999.

(b) Lihua Li and Robert A. Clark, “szrid Classification Method for False-Positive Reduction in
CAD for Mass Detection,” Proc. of 5" Intern. Workshop on Digital Mammography, 2000.



(c) Lihua Li, W. Qian, L.P. Clarke, R.A. Clark, J. Thomas, "Improving Mass Detection by
Adaptive and Multi-Scale Processing Methods in Digitized Mammograms," Proc. of SPIE
Medical Imaging, 1999.

2. Journal paper

(a) L. Li, Y. Zheng, L. Zhang, R.A. Clark, “False-positive reduction in CAD mass detection
using a competitive strategy,” Medical Physics, 28(2), Feb. 2001.

3. Fundings Applied

(a) "New CAD Strategies for Early Detection of Breast Cancer", a proposal submitted to U.S.
ARMY Medical Research and Material Command, BCRPO1-IDEA

CONCLUSIONS

The great variation of characteristics of mammograms and masses hinders us in developing a
high detection performance and more generalizable CAD system. The typical variations between
different mammograms result either from the imaging process (such as film exposure, film
label), digitization process (such as spatial / intensity resolution, response function to optical
density), or most importantly the inherent breast tissue characteristics. The variations of masses
include its size, contrast, shape, location, intensity pattern and its relation to the surrounding
tissues. The research work taken in second year of this project is directed to address these
problems by developing and optimizing advanced segmentation and classification methods. The
results demonstrated their effectiveness.



False-positive'reduction in CAD mass detection using a competitive
classification strategy
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High false-positive (FP) rate remains to be one of the major problems to be solved in CAD study
becausc too many false-positively cued signals will potentially degrade the performance of detcct-
ing true-positive regions and increase the call-back rate in CAD environment. In this paper, we
proposed a novel classification method for FP reduction, where the conventional ‘‘hard”” decision
classifier is cascaded with a “‘soft’” decision classification with the objective to reduce false-
positives in the cases with multiple FPs retained after the ‘‘hard”’ decision classification. The
“‘soft”’ classification takes a competitive classification strategy in which only the “‘best’” ones are
sclected from the pre-classified suspicious regions as the true mass in each case. A neural network
structure is designed to implement the proposed competitive classification. Comparative studies of
FP rcduction on a database of 79 images by a ‘‘hard” decision classification and a combined
““hard”’—*‘soft’’ classification method demonstrated the efficiency of the proposed classification
strategy. For example, for the high FP sub-database which has only 31.7% of total images but
accounts for 63.5% of whole FPs generated in single ‘‘hard’’ classification, the FPs can be reduced
for 56% (from 8.36 to 3.72 per image) by using the proposed method at the cost of 1% TP loss
(from 69% to 68%) in whole database, while it can only be reduced for 27% (from 8.36 to 6.08 per
image) by simply increasing the threshold of “‘hard’ classifier with a cost of TP loss as high as
14% (from 69% to 55%). On the average in whole database, the FP reduction by hybrid ‘‘hard’’—
“soft’’ classification is 1.58 per image as compared to 1.11 by “‘hard’’ classification at the TP costs
described above. Because the cases with high dense tissue are of higher risk of cancer incidence and
false-negative detection in mammogram screening, and usually generate more FPs in CAD detec-
tion, the method proposed in this paper will be very helpful in improving the performance of early

detection of breast cancer with CAD. © 2001 American Association of Physicists in Medicine.

[DOI: 10.1118/1.1344203]

Kcey words: CAD, false-positive, classification, mass detection, mammography

I. INTRODUCTION

The computer-aided diagnosis (CAD) method has been pro-
posed as a ‘‘second opinion’” or a ‘‘pre-reader’’ strategy to
improve mammogram interpretation. The methods reported
have included the detection and classification of either mi-
crocalcification clusters or masses.'~> Compared to microcal-
cification cluster detection, mass detection clearly poses a
much more difficult problem and usually generates more
false-positive signals in detection because masses are often:
(a) of varying characteristics in size, shape, and density; (b)
exhibit poor image contrast in breast with high density tis-
sucs; (¢) have a similar characteristic to the nonuniform high
dense tissue background; and (d) are highly connected to the
parenchymal tissue, particularly for spiculated masses.
Numerous investigators have addressed mass detection in
the past scveral years by following a general approach con-
sisting of three major steps: preprocessing, localization/
feature extraction, and classification. Most of the proposed
researches have been directed to the first two CAD modules
and the feature selection part in classification module. In
preprocessing, Lai ef al.* proposed a modified median filter-
ing method to remove background noise before using tem-

250 Med. Phys. 28 (2), February 2001
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plate matching to detect circumscribed masses. Yin et al’®
used both linear and nonlinear bilateral subtraction to en-
hance possible masses. Petrick et al. proposed a two-stage
adaptive density-weighted contrast enhancement (DWCE)
filtering technique to enhance objects in mammogram.® Po-
lakowski ef al.” used a difference of Gaussians (DOG) filter
to highlight suspicious regions in the mammogram. We de-
veloped a wavelet-based mass detection system where a
multi-orientation transform and a multiresolution wavelet
transform are used as preprocessing for improving mass seg-
mentation and feature extraction.®~'? The feature extraction
involves either region based and/or pixel based methods,
where the regions could be a manually extracted region-of-
interest (ROD)!' or an automatically segmented one.*®!? The
most commonly used features in mass detection include tex-
tures derived from the gray level dependence matrix,'! tex-
ture energy obtained from the output of Law’s filters,"® fea-
tures derived from pixel orientation,'*'® and density and
morphological features.*®'® Due to the complexity of mam-
mograms and the similarity of mammographic characteristics
between mass and dense tissue, classification faces a great
challenge in reducing false-positives. Research efforts have

© 2001 Am. Assoc. Phys. Med. 250
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'7.13 and the appli-

11

mostly been focused on feature selection
cation of widely used pattern classifiers in computer vision.

Although the mass detection methods proposed to date
have met varying levels of success, the high false-positive
rate remains to be one of the major problems to be solved in
CAD study because too many false-positively cued signals
will degrade the performance of detecting true-positive re-
gions and increase the call-back rate in the CAD environ-
ment. In this paper, we first presented a brief overview of the
FP problem in CAD. A new approach to classification was
then developed with the objective to reduce the FPs in cases
with high FP number.

Il. FALSE-POSITIVE REDUCTION

With analysis of the CAD mechanism, it can be found
that the direct cause of FPs is in the stage of locating suspi-
cious areas in which the number of located suspicious re-
gions is usually much higher than the expected true mass
number in order to minimize the false-negative detection.
Classification is designed to discriminate the mass from the
normal tissue region among the located suspicious regions.
The criteria for success are therefore two-fold: the final de-
tected region number should be minimized and the probabil-
ity of inclusion of the true mass regions should be maxi-
mized. A common approach to reduce the FP rate is to
perform a further featurc analysis of the segmented/located
regions and to use a classifier to discriminate masses from
the normal tissuc rcgion. However, due to the fact that (1)
mass and the normal dense tissue region have a great simi-
larity in mammographic appearance, and (2) there is a great
variation in feature distribution of different masses, the clas-
sification is recognized as a very difficult task in CAD. From
the classification perspective, the former requires more
elaborate features to be extracted for classification while the
latter means the classifier structure should be more flexible.

Many features have been designed and/or tested for FP
reduction, ranging from intensity domain, and morphological
domain, to textural domain. Different feature ranking and
sclection techniques such as genetic algorithm were applied
to optimize the feature selection under various performance
criteria.'” Most of the typical pattern classifiers have been
explored for discrimination of masses from normal tissue
regions, such as decision tree, ! Bayes classifier,'® k-nearest-
neighbors (KNN),** neural networks,'>?° linear discriminant
analysis (LDA)," and quadratic classifiers.’! A common
characteristics of current FP reduction schemes is that a
“‘hard”’ discriminant criteria is developed by training to
evaluate each segmented/located suspicious region. From the
standpoint of region-based classification, it is reasonable.
The task of classifier design is to find an optimal discrimi-
nant hyperplanc in feature space. However, because the clas-
sifier is trained by regions and the criteria is fixed for all
images, the segmented FPs cannot be reduced effectively by
a single ‘‘hard”’ decision classifier especially for high-dense
cases. With an analysis of ‘‘hard’’ decision-making classifi-
cation results, it can be found that the distribution of FPs is
quite different from case to case. Usually there are less FPs

Medical Physics, Vol. 28, No. 2, February 2001
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Fig. 1. Somc detection cxamples with a ““hard’ decision classifier (2)
mostly fatty breast; (b) mixed fatty-dense breast: (c) mostly densc breast.

for fatty breast and more FPs for dense breast in which more
masslike regions are segmented. In other words, from the
image-based standpoint, the efficiency of classification strat-
egy by means of ‘‘hard”’ decision criteria is questionable.
Figure 1 shows some detection examples with a “‘hard”’ de-
cision classifier used in our CAD system as described later.
Figure 1(a) is a fatty case with one mass as indicated. It is
detected with one FP in the detection output. Figure 1(b) is a
case with mixed fatty-dense tissue. The mass is detected but
there are 11 FPs generated. Figure 1(c) is another case with
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high-dense tissue. It produced a similar result to that of Fig.
1(b).

Because the dense breast usually has a higher risk of can-
cer incidence and a higher false-negative detection in mam-
mogram screening, the reduction of FP in cases with mul-
tiple FPs in CAD detection is of great significance. This
paper addresses this FP reduction problem. As described
later, it focuses on the exploration of new classification strat-
egy with less effort on a new feature design.

lll. HYBRID CLASSIFICATION METHOD
A. Feature extraction

Seven features are used in this proposed FP reduction
method. They are similar to those we reported before® except
that: (a) one more mixed boundary-intensity feature is added,;
and a (b) the calculation of some features is modified with
more reasonable definitions. For the convenience of descrip-
tion, they are listed in the following subsections.

1. Morphological features

(a) Area: The number of pixels in the extracted region.

(b) Circularity (circ): It provides information about the
gross shape of the mass but contributes nothing specific
about the fine detail of the mass boundary. It is defined as

PZ
circ= 5 1)
where P is the perimeter and S is the area of the extracted

region.
(c) Normalized deviation of radial length (d¥!): The nor-
malized deviation of radial length is calculated using

A/

1 & (ry—m,\?

drl= —2(* ) @
ka:[ m,

where r,, is the radial length from the centroid (xg,y,) to the
kth pixel (x;,y;) on the boundary of the extracted region, m,
is the mean radial length, and N, is the total number of
pixels on the boundary of the region.

It is a measure of how the boundary changes in a micro-
scopic way. Normalization is done due to the fact that the
edge roughness increases with the size of mass.

2. Intensity features of region

(a) Intensity variation (/v): This is a measure of the
smoothness of the pixel intensity in extracted region and
defined as

o ! ;s 2
iv= \/ﬁ;(igu (i) =ma)?, ©)

where N, is the total number of pixels in segmented region
A, and m, is the mean intensity value of region 4;

m,=-—— 1(i,f). 4
NM_EM (i.)) @)
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(b) Mean intensity difference (mid): This parameter mea-
sures the intensity difference between the extracted region
and its surrounding area

. 1 1
mid=— > I(i,j)— — >
N, j

1(i,)), (5)
Ngijyea ifyed,

where N, is the total number of pixels in segmented region

A, and N, is the total number of pixels in region A, surround-

ing region A. It was obtained by morphological dilation op-

eration on region 4 with N, to be approximately equal to

N

a-

3. Intensity features of boundary

(a) Mean gradient of region boundary (mg): This param-

eter measures the edge contrast of the extracted region:
i Ny

me=1r 3 s ©
where N, is the total number of pixels on the boundary of
extracted region, and g, is the edge gradient value of the k-th
boundary pixel. The edge gradient is calculated by the Sobel
operator.

It is a measurc of the intensity change in perpendicular
direction along the edge of region in microscopic way.

(b) Mcan intensity difference along region boundary
(mid-b): This parameter measures the mean intensity differ-
ence between inside and outside the extracted region along
its boundary

1
mid-b= — z,
Nin (i,j) e Ay,

1
1i)-5— 2 16D, O
out (i.j) € A gy
where N, is the total number of pixels in inside region 4;,
and N, is the total number of pixels in outside region A gy
surrounding region 4. They are obtained by one erosion and
one dilation operation on region 4, respectively, with an
eight-connection structuring element.

It is a measure of intensity change along the edge of re-
gion in an average meaning.

B. Hybrid classification

The hybrid classification is a cascaded classification struc-
ture. Each segmented region is first pre-classified by a
“‘hard’’ classifier. Then the pre-selected regions in each im-
age take an image-based competition. The candidates are

voted by a committee to select the best ones to be “‘true
masses.

1. “Hard” classification using a fuzzy decision tree
method

The segmented regions are first classified using a fuzzy
decision tree method. It is a modification of our previously
developed fuzzy binary decision tree (FBDT) method 5% Its
decision tree structure is depicted in Fig. 2, in which the
classification decision at each tree node is made based on the
region feature as well as region size. The design of decision
tree structure is based on an observation that the feature dis-
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FiG. 2. Flow chart of the decision trec for “‘hard’’ classification.

tributions arc statistically different for different mass size.
The fuzzy membership functions at different decision nodes
is similar to that dcscribed in our previously reported
work 522

2. “Soft” classification using committee decision
method

(a) Principle. The ‘‘hard” classification method is
region-oriented. The thresholds of the decision nodes in the
fuzzy decision tree arc selected by training to be small
enough to ensure a high detection sensitivity. However, at
the mean time, scveral FPs in each image may be produced,
especially for that with nonuniform high density tissue. The
““soft™ classification strategy proposed is to reduce FPs by
an image-based analysis for selecting the best ones among
the pre-classified candidate regions as the “‘true’’ masses. It
is performed by a committee decision method based on a
simple premise that most features of a mass should be top in
individual feature ranking among all the candidate suspicious
regions in a single mammogram.?

The committee consists of N “‘experts,”” each provides a
ranking list of the suspicious regions with a likelihood to be
a mass using a single feature. A region is decided by the
committee to be a possible mass if it is ranked among top
Ko(Ky<M) by more than C, ‘‘experts,”” where M is the
number of suspicious regions in each image. Mathematically,

Medical Physics, Vol. 28, No. 2, February 2001

253

it can be described as follows: For a region i among M can-
didate regions, its ranking value by feature j is

rD=k, ke[l1,M] (8)

if feature j of region i is at the order £ among M regions.
The committee score of region i is defined as

N
C=2 Ui, ©)
Jj=1
where
(1 k<K,
A0y = 10
VOiD=1o ksky (10)

K is an order threshold, and N is the “‘expert’ number.

Region i is classified to be a mass if C;=Cy, i.e., more
than C,, “‘experts’” vote region i for mass class provided they
can select K, regions from all M regions as candidate
masses. Please notice that the final ‘‘mass’’ number decided
by committee is not fixed from case to case. It depends on
following factors:

(1) the number of candidate regions and their distribution of
features;

(2) the number of regions each ‘‘expert’” can vote to be
‘“mass,”’ i.e., the order threshold Ky;

(3) the threshold of committee score Cy, i.e., the minimum
number of favoring ‘expert.”

The maximum number of ‘‘mass’” in each image is

ko*N
Co }’M]7 (n

where floor[*] is the operation of taking the smallest integer
value.

(b) Neural network implementation. The ‘‘soft’’ classifi-
cation algorithm described above is implemented using an
adaptive competitive classification neural network (CCNN).
The structure of CCNN is depicted in Fig. 3, where (b) is a
sub-network of the nodes in layer 2. It is a feed-forward
four-layer neural network with fixed weights and adaptive
neuron bias. All weights of each connection are units except
those shown in the sub-network (b). The four layers are de-
scribed as follows.

Layer I: Feature input. Each region has a feature vector.
Their components are feed into next layer individually so
that they can be evaluated together with the corresponding
component from other regions in the subsequent competitive
ranking;

Layer 2: Competitive ranking. It is used to determine if
the region is ranked in top K of all the input regions based
on individual feature competition, where K, is the bias/
threshold value of bi-polar step function of neuron. For each
region, there is N ranking outputs.

Layer 3: Region decision. The outputs of individual fea-
ture ranking are input to layer 3 for region classification. The
neuron of this layer has a step-function with a threshold Cy,
which is a decision threshold.

MX= maxl floor
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FiG. 3. Adaptive compctitive classification ncural network (CCNN) for
“‘soft” classification. (a) CCNN structure; (b) the sub-neural network used
in (a).

Layer 4: Image decision. Layer 4 is an optional layer. It is
designed to be a decision-feedback controller to limit the
maximum ‘‘mass’’ number per image, which is set to be the
threshold of output neuron. It is performed by controlling the
neuron thresholds in layer 2 (K,) and layer 3 (Cy).

IV. RESULTS

A comparative cvaluation of false-positive reduction by
means of a ‘‘hard’’ decision classifier and a combined
“‘hard”’—*‘soft” decision classifier was performed using a
testing database consisted of 30 normal and 49 abnormal
mammograms with totally 74 masses. This database is visu-
ally divided into three categories with different density, in-
cluding 18 dense, 21 fatty, and 40 mixed mammograms. The
classifiers work at their operating points as developed in our
second generation CAD mass detection system design.* The
electronic truth file was formed for each abnormal mammo-
gram where the masses were labeled by an expert mammog-
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F16. 4. Tmages and their corresponding average falsc-positive rate distribu-
tions versus falsc-positive signal numbers after initial ““hard”” classification.

rapher based on visual criteria and biopsy results. All the
features except feature ‘‘Area’” listed in Sec. III are used in
“‘soft’” classification, i.e., there are six ‘‘experts’’ in the
decision-making committee. The feature “‘Area’” was not in-
cluded simply because the size of suspicious region is not a
good feature for ranking in “‘soft” classification. In other
words, the bigger or smaller of region size does mean a
higher likelihood to be a mass. The threshold of committee
score Cy is 3, i.e., at least half of the committee members
have to vote it for a suspicious region to be a ‘‘mass.”” The
order threshold K|, is selected automatically with an objec-
tive constraint of the final detected mass number less than 6.
With an initial value K,=35, if there are more than six re-
gions detected as masses, the threshold value K, will be
reduced recursively until it meets the constraint.

The evaluation was taken in three steps. The first step is to
get a set of detection results by our CAD detection system
with only a decision tree based ‘‘hard’’ classification, as
shown in Fig. 2. They are used as the reference of compara-
tive studies of the proposed classification method. Figurc 4
shows the distributions of image and their group-average
false-positive rate versus false-positive signal numbers on
the image in a detection by our CAD mass detection system
on the testing database used in this study. Figure 5 is the
corresponding accumulative distributions of FPs versus two
different image percentages. It is observed that the generated
FP number is quite different from case to case. Some cases
do not have any FPs but some cases can have more than ten
FPs. For different density categories as listed earlier, the FP
rates are 7.67, 2.24, and 3.60 per image for dense, fatty, and
mixed mammograms, respectively. One-third cases account
for almost two-thirds of all FPs in the detection.

The second step is to evaluate the FP reduction perfor-
mance with ‘‘hard”’ classification by increasing the threshold
value of classifier. Figure 6 are the distributions of images
and their corresponding average FP rate. Compared to Fig. 4,
the percentage of cases with lower FP is increased, which
means some FPs are removed in the cases with higher FP
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FiG. 5. Accumulative distribution of FPs versus two different image per-
centages. (a) beginning from the high FP image group, (b) beginning from
the low FP image group.

number. Figure 7 is the corresponding accumulative distribu-
tions of FPs versus two different image percentages. For
convenience of comparison, the curves of Fig. 5 are also
displayed. It is observed that the accumulative FP
percentage-in-all beginning from high FP image group is
consistently higher than that before FP reduction, while the
accumulative FP percentage-in-all beginning from low FP
image group is consistently lower, which means the FP dis-
tribution among different cases is even more uneven after FP
reduction by classification with higher threshold. The 17.7%
cases with higher FP numbers generated almost half of the
all FPs. Figure 8 shows the distribution of FP rate and its FP
reduction of each image group with different numbers of
FPs. It is observed that although the overall average FP rate
is reduced (from 4.16 to 3.05 per image in whole database),
the average reduction in images with higher FP incidence is
only a little bit more than that in lower FP images, and the
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FiG. 6. Tmages and their corresponding average falsc-positive rate distribu-
tions after FP reduction with a loss of 14% TP rate by using “‘hard’’ clas-
sification with a higher threshold.
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distribution of FPs remains to be very uneven. Furthermore
this very limited FP reduction is obtained at a big cost of
14% loss of detection sensitivity as shown in the FROC
curve (see Fig. 14). Figure 9 shows the FP reduction results
of the three cases shown in Fig. 1. It is noticed that: (1) FPs
are reduced in all the three cases, but the true masses in two
cases are also removed; (2) the cases with high number of
FPs remain to have many FPs. An FROC analysis of the
“‘hard> classification performance at different thresholds
was taken. The FROC curve (shown in Fig. 14) together with
the ““hard”’—*‘soft’’ classification analysis.

The third step of evaluation is taken on the proposed hy-
brid classification scheme in which the ‘‘hard’’ classifier is
cascaded with a novel “‘soft™ classification as described in
Sec. III. Figure 10 shows the distributions of images and
their corresponding average false-positive rate versus false-
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FiG. 8. Distribution of falsc-positive ratc and its FP reduction in differcnt
image groups at a loss of 14% TP rate by increasing threshold of “‘hard™
classification.
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F1G. 9. FP reduction results of the three cases shown in Fig. | by increasing
the threshold of ““hard’ classifier.

positive signal number in image after ‘‘soft” classification.
The corresponding accumulative distributions are shown in
Fig. 11, where the curves of Fig. 7 are also displayed. A
significant change of image distribution is observed, where:
(1) no image has an output with more than five FPs; (2) the
accumulative FP percentage-in-all beginning from higher
(lower) FP image group is consistently lower (higher) by the
new FP reduction method. For a comparison with the result
of single “‘hard’’ classification, a distribution of FP rate and
its FP rcduction in each image group is shown in Fig. 12. It
is observed that, compared to the FP reduction scheme with
increased threshold ‘*hard’’ classification, a much bigger
falsc-positive reduction is achieved in the images with more
FP dctection signals. The final average detection FP rate in
whole database is reduced to 2.58 with only 1% loss of de-
tection sensitivity. Figure 13 shows the FP reduction results
of the same cases as shown in Fig. 1 and Fig. 9. The FPs in
high FP cases is significantly reduced while the true masses
are well kept. The distribution of FP rate in different image
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FiG. 10. Images and their corresponding average falsc-positive rate distribu-
tions after FP reduction with a loss of 1% TP rate by using “‘soft”” classi-

fication.
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centages before () and after (I1), using ““soft” classification. (a) beginning
from low FP image group, (b) beginning from high FP image group.

group is more uniform, which means most of the images
generate a similar number of FPs except for the one with
very few FPs. A FROC analysis of the *hard”’—“‘soft”’ clas-
sification performance was taken at different thresholds as
that in the FROC analysis of ‘‘hard’ classification. The
FROC curves are shown in Fig. 14. The comparison between
two FROC curves shows the effect of ‘‘soft”” classification
strategy. All these results demonstrate that ‘‘soft”’-decision
classification can effectively remove the FPs in higher FP
incidence cases with less impact on the images with less FPs
for sccuring a high sensitivity.

V. DISCUSSION

The great variation of mammographic characteristics of
mammograms and the great similarity between mass and the
dense normal tissue regions hinder us in developing a high
detection performance and more generalizable CAD system.
A major problem in current CAD mass detection systems is
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Fi6. 12. Distribution of falsc-positive rate and its FP reduction at a loss of
1% TP ratc by ““soft’” classification.
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Fic. 13. FP reduction results of the three cascs shown in Fig. 1 by “soft”
classification.

that they usually have a low specificity in order to get a high
sensitivity. Some studies have indicated that the FP signals
may degrade the performance of detecting true-positive re-
gions in cued CAD environment. In past years, a lot of ef-
forts have becn directed to classification module aiming at
FP reduction. However, most of them focused on the study
of application of existing classifiers (such as LDA and NN)
and the optimal feature selection. In this work, we address
for the first time the classification strategy in FP reduction.
The basic motivation originated from the observation that:
(1) the FP signals generated in current classification schemes
have a very uneven distribution, specifically less FPs in fatty
mammogram and much more in high dense case; (2) the FP
problem may have a bigger impact on cancer screening with
CAD of dense cases, because the dense breast usually has a
higher risk of cancer incidence and higher false-negative de-
tection.

In addition to the inherent difficulty because of the simi-
larity of mammographic characteristics between dense tissue

t

24
(2]
27
LLE
05
04
03

02
——"Hard"
~— "Hard"-"Soft"

04

[

o [ X] 1 1.8 2 25 3 35 4 s

FiG. 14. FROC analysis of the cffect of competitive classification strategy
on falsc-positive reduction.
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region and mass, a major problem in current CAD detection
is the classification takes a ‘‘hard’’ classification criteria. The
purpose of this work was to develop a new classification
scheme by introducing a “‘soft’” decision strategy in FP re-
duction. This new decision-making method provides a flex-
ible criteria in each mammogram. The classification is
image-based as opposed to region-based in ‘‘hard’’ classifi-
cation. The evaluation results have demonstrated its effi-
ciency. Compared to the conventional (region-based) classi-
fication, a higher FP reduction can be achieved with less loss
of detection sensitivity. What should be pointed out here is
this research is directed to the analysis of new classification
strategy, and all the evaluations were taken on only one-scale
mode in the detection system we developed.* Therefore the
sensitivity listed in Fig. 14 is relatively low. It is believed
that this new classification strategy can also be successfully
applied to FP reduction in microcalcification cluster (MCC)
detection.

VI. CONCLUSION

High false-positive rate is one of the major problems to be
solved in a CAD study because too many false-positively
cued signals will potentially degrade the performance of de-
tecting true-positive regions and increase the call-back rate in
CAD environment. A very common observation of current
CAD detection is the distribution of FPs is quite different
from case to case, usually less FPs for fatty breast and much
more for dense breast. A direct cause of this deficiency is the
existing FP reduction classifiers take ‘‘hard’” decision crite-
ria. The method proposed in this paper is a combination of
““hard’’ and “‘soft”’ classification, where the “‘soft’’ classifi-
cation takes a competitive classification strategy and only the
“‘best’” ones are selected from the pre-classified suspicious
regions as the ‘‘true’’ mass in each casc. The evaluation
results demonstrate its efficiency both in reducing the FPs in
high incidence cases and in the overall FP reduction. How-
ever, it should be pointed out that an optimal classification
can only be made by “‘optimal’’ features with a correspond-
ing “‘optimal’’ classifier. In order to have a better FP reduc-
tion performance, further studies will be needed including (a)
optimal feature selection for hybrid classification, (b) opti-
mized combination of ‘‘hard’” and “‘soft’’ classifiers.
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Mammography
Yong Chu™®, Lihua Li"™®, and Robert A. Clark?
2 Department of Computer Science and Engineering

bDepa.rtment of Radiology, College of Medicine
H. Lee Moffitt Cancer Center & Research Institute
University of South Florida

ABSTRACT

Mass segmentation is a vital step in CAD mass detection and classification. A challenge for mass
segmentation in mammograms is that masses may contact with some surrounding tissues, which have the similar
intensity. In this paper, a novel graph-based algorithm has been proposed to segment masses in mammograms. In
the proposed algorithm, the procedure of region growing is represented as a growing tree whose root is the selected
seed. Active leaves, which have the ability to grow, in the connection area between adjacent regions are deleted to
stop growing, then separating the adjacent regions while keeping the spiculation of masses, which is a primary sign
of malignancy for masses. The new constrained segmentation was tested with 20 cases in USF moffitt
mammography database against the conventional region growing algorithm. The segmented mass regions were
evaluated in terms of the overlap area with annotations made by the radiologist. We found that the new graph-based
segmentation more closely match radiologists™ outlines of these masses.

Keyword: Digital mammography, Mass segmentation, Region growing. Graph-based segmentation

1. INTRODUCTION

Mammography is important in early detection of breast cancer. Masses contain important signs of breast
cancer and are hard to detect as they often occur in dense glandular tissue. Numerous segmentation methods have
been developed to segment masses in mammograms. A two-stage adaptive density-weighted contrast enhancement
segmentation method is used by Petrick et al.” to detect masses. Li et al.’ used a segmentation method based on
Markov random fields to segment regions based on texture information. Multiresolution wavelet analysis
techniques are developed by Chen and Lee® to detect mass edges. Lietal.” presented a statistical model supported
approach for enhanced segmentation and extraction of suspicious mass area from mammographic images.

Region growing is also popularly used for mass segmentation. Some methods attempt to utilize shape
constraints in conventional region growing to regularize the segmented partitions. Matthew A. Kupinski’ proposed
anew algorithm to add additional a priori information into the creation of the mass partitions. The original image is
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multiplied by a function, called the constraint function that suppressed distant pixel values because masses are tend
to be compact. An isotropic Gaussian function centered on the seed point location with a fixed variance is chosen
as the constraint function. More circular regions are generated when this method is used because it is possible that
spiculations are more likely to be eliminated when the image is multiplied by Gaussian function. Huo et al.
extracted mass regions using region growing methods and calculated two features, circularity Circ() and size Size(),
for every grown regions. The final partition is chosen by analyzing these functions and determining transition
points or jumps in the features. But if a transition point cannot be found, the segmentation algorithm fails to return
a final partition. Both methods didn’t take the local shape of speculations and the connected area between adjacent
objects into account.

In this paper, we present a graph-based region growing method for segmenting masses in digital
mammograms. In the proposed algorithm, the procedure of region growing is represented as a growing tree whose
root is the selected seed. Active leaves, which have the ability to grow, in the connection area between adjacent
regions are deleted to stop growing, then separating the adjacent regions while keeping the spiculation of masses.
The contents of the paper are organized as follows. Section 2 presented a graph theory description of region
growing. A new graph-based region growing method for mass segmentation is proposed in Section 3. Section 4
describes the results of the mass segmentation experiments. Finally we have a conclusion of this study in Section 5.

2. GRAPH THEORY DESCRIPTION OF REGION GROWING

2.1. Region growing .

Region growing (RG)’ constructs a region by starting from a user-provided pixel called seed. At each
iteration, the algorithm finds the boundary pixels of the region that participates in the growing procedure. For each
of these boundary pixels, the neighborhood is checked for pixels that are not assigned to this region. If the intensity
of checked pixel is close to the mean intensity of the region under consideration, then the pixel is assigned to this
region. The algorithm stops when no pixels to be classified to the region can be found.

Given an image, we define the set of coordinates in this image as:

IM={(x,y):x=1,2,---,m and y=l,2,---,n}. (1)

The function describing the pixel gray levels of the image is given by / (x, y) where (x, y)e IM .
Assume region growing stops at iteration N. For conventional region growing segmentation, the segmented region
R, atiteration i: i =1,---,N can be represented as

R = {(A y): II(x, v)- M,._ll <T,, and NBR_ (x, y) = l} ) (2)
Where M, is the mean intensity of R._ atiteration i —1, T

e 1S a gray-level homogeneous threshold.
NBR._(x, v) is defined as

(e=Ly)(x+Lyl(xy=1) or (x,y+1)e R,

All (x"'1,y)9(x+l’y)’(x’y—l)’(x’y'*-l)e Ri—-l (3)

!
NBR_(x.y)=1

Region growing is a local thresholding process, which utilizes only the gray-level information around the seed
point.

2.2. Some concepts about directed graph

In the proposed method, region growing is represented as a growing tree whose root is the selected seed. A
rooted tree is a directed tree. For the sake of convenience in method description, some concepts about directed
graph® are introduced first.

Directed graph: A directed graph D is a pair of sets (V, A) where V' is nonempty, and A is a set of ordered pairs

of elements of V . The elements of V' are called the vertices of D and the elements of A are called the directed
edges or arcs.
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Indegree and outdegree: In a directed graph, at any vertex there are some number of arcs directed toward, or
coming into, that vertex and some number of arcs directed away from. or coming out of, that vertex. The number of
arcs coming into a vertex Vv is called the indegree of v . The number of arcs coming out of a vertex v is called the
outdegree of v. '

Rooted tree: A rooted tree 7 is a directed graph that has precisely one vertex 7 that has indegree 0. The vertex is
called the root of the rooted tree. Those vertices with outdegree 0 are called leaves. :
Parent vertex and child vertex: If there is an arc from vertex Vv to vertex W, we say that w is a child vertex of
V, V is the parent vertex of w.

2.3. Growing tree for RG
In the proposed method, region growing is represented as a growing tree whose root is the selected seed.

The vertices correspond to the pixels in the segmented region. The segmented region R; at iteration / is
represented as the rooted tree T;. The children of a vertex will be within the 4-neighborhood of it. The 4-
neighborhood N, (v) of a vertex v = (x, y) consists of the four pixels whose positions in the image differ from

v in only one coordinate by +1, shown in Figure 1(b).
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Figure 1 (a) Iteration I of region growing as a tree T; (b) The 4-neighborhood of a vertex
We need to introduce some new definitions for growing tree used in the proposed method, shown in Figure 1(a).
(1).Active vertex (va ): All vertices, which are in T; but not in T,_,, are called active vertices in 7. They
correspond to the pixels, which are assigned to R; but not R,_,. The root is the only active vertex in Tj,.
(2). Real child vertex: For any active vertex va in T,_,, if there is a pixel in N, (va) assigned to R; but not
R._, , this pixel called a real child vertex of va in T; with one real arc coming into it. This pixel is also a real
vertex (vr) in T;. All real vertices in T;_, are real vertices in T;. All active vertices 7, are the real child vertices

of active verticesin T,_,.
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(3).Virtual child vertex: For any active vertex va in T_l , if there is a pixel in N 4 (va) assigned to Rl._l except

i
its parent vertex, this pixel is viewed as a virtual child vertex of va in T, with one virtual arc coming into it.
(4). Indegree, outdegree and vtdegree: we only consider real vertices. The number of real arcs coming into a real
vertex V7 in T is called the indegree of v in T;. The number of real arcs coming out of a real vertex vr in T,

is called the outdegree of vr in T;. The number of virtual arcs coming out of a real vertex vr in T} is called the

vtdegree of vr in T;.

(5). Active leaf (la ): Active vertices in 7: are called active leaves in T: , which are real vertices in 7: but not in
7;_1 . The sum of vtdegree and outdegree of an active leaf in T, is 0. Active leaves in Y: are child vertices of active
leavesin T,_|.

(6). Dead leaf (/d ): Dead leaves in T, are real vertices in T,_, with the sum of vtdegree and outdegree smaller

than 3.
(7). Trunk: Trunks in T} are real vertices in T._, with the sum of vtdegree and outdegree equal to 3.

Based on the definitions above, region growing constructs a rooted growing tree in which the root is a
user-provided seed. At iteration i, the segmented region is represented as T;. For any vertex except the root, there
are one parent vertex and at most three child vertices (no parent vertex and at most four child vertices for the root).
The active leaves and dead leaves in T, constitute the boundary pixels of the boundary pixels of the region R.

Only the active leaves contribute to the growing of the tree T; to the tree T.,, . For each of these active leaves, the
neighborhood is checked for the vertices that are not in T . If the intensity of checked pixel is close to the mean

intensity of region under consideration, then the pixel is assigned to T}, , which are the active leaves of T,,. The

algorithm stops when no active leaves can be found.

3. GRAPH-BASED RG FOR MASS SEGMENTATION

In mammography, masses may contact with surrounding tissues, which have the similar intensity. The new method
discussed in this paper attempts to solve this problem by computing the probability of extension to other tissues of
every pixel for every iteration in region growing. The pixels with high probability of extension are not allowed to
grow. and therefore separating the adjacent tissues from masses while keeping spiculations.

Mass
Spiculations

<7

Dead leaves

Seed

Trunk

Active leaves
Spiculations Other tissue
Figure 2 Mass segmentation at iteration { in region growing
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3.1. The probability of extension into other tissue
All active leaves at iteration 7 (real vertices in T, but not in T._) are the child vertices of the active

leaves of T;_l - It means that only active leaves have the ability to grow at each iteration. so the probability of
extension into other tissues (PE) for each trunk and dead leaf 1s 0.

At iteration i, all neighboring pixel of active leaves in T._, are checked. If they are not in R._,and

satisfy II (x, y)— M i-ll < T, . they are supposed to be in R.. The number of the supposed active leaves and dead

leaves are computed. Then active leaves ( /a s) are labeled into active groups (G s). Active groups are the finite (8-)

connected set of points, that are, discrete curves. The size of an active group (IG, ) is defined as the num of points

in G . From Fig.2, we can see that a spiculation or a bridge between the mass and other tissue, at iteration 7, can

be characterized as a small set of the active leaves surrounded by dead leaves. An active group with small IGI

which is surrounded by dead leaves, is called a hole ( H ) in the proposed method. We can say that the size of

H ,H I ) is decreasing if a hole represents a spiculation, but not for a bridge between the mass and other tissue.
Let a hole grow forward 2n iterations, the mean size of the hole in first n iterations is given by M mr - and the

mean size of the hole in the second n iteration is given by M ,,, . The PE of cach pixel in this hole can be given

M .
by SHL . Let us summarize it as following.
MsHL + Mﬂ-IL
0 (x, y)is a dead leaf ora trunk atiteration i
PE,(x,y)=40 (x, y)is an active leaf and (x, y)e hole atiteration i . (4)
M : . . .
sHL (x, y)is an active leaf and (x, y)e hole at iteration i

MsHL+MjHL

3.2. Graph-based RG in Mass segmentation

The conventional RG method makes use of the fact that the intensities of pixels inside the mass are close
to each other, but it does not take shape into account in growing. Irregular segmentation results can arise in
conventional region growing. The graph-based region growing algorithm adds constrained condition to prevent
mass region from effusing into other tissues while keeping the spiculations of the mass. Mathematically, the new
algorithm is defined as

R, ={(x’y):ll(x’y)—Mi-ll<Tim and NBR,_, (x, )’)‘_‘1 and  PE, (X’Y)<Tm}- (5)
where PE is the probability of extension into other tissues, T, is the threshold of PE. The pixels, which have the

probabilities greater than T, . will be deleted from the segmented region.

A complete procedure of graph-based region growing algorithm is described below:
(1). Select a seed for region growing and define the seed as an active leaf in T} .

(2). At iteration i, every neighboring pixels (x, y) of active leaves in T’_, are checked. If they are not in ‘Ri—l and

satisfy ll (.x, y)— M i_ll <T,,, they are supposed to be in R..
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(3). Compute the number of the supposed active leaves Ilal and dead leaves.

(4). Label the active leaves groups ( G s) and calculate the size of active groupsIG,.

(5). If 'Gl <T,x Qlal + lld l) compute the number of the neighboring dead leaves Ilsd I of the active groups. If
llsdl >T, XlGl , the active group is a hole ( H ).

(6). Compute PE for supposed active leavesin H . If PE > T, ., the supposed active leaves in the H are

eliminated from R,.
(7). Continue the procedure, the algorithm stops when no active leaves are found.

4. RESULTS AND DISCUSSION

Segmentation results for a mass connected with surrounding tissues are shown in Figure 3. Conventional
region growing extend into the background and thus a connected tissue is included in the segmented region. The
graph based region growing does not get confused by the tissue connected with the mass and correctly segments
this mass while keeping spiculations. From figure 3, we can see that the graph based region growing method
segment the mass better than conventional region growing.

(a) (b) (c)

Figure 3. Segmentation results for ( a ) a mass contacted with surrounding tissues using (b)
graph-based region growing ( ¢ ) conventional region growing

Figure 4. Comparison results of segmentation. Black boundaries denote the graph-based segmentation.
White boundaries denote the radiologist-segmented results.
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In order to examine the performance of the proposed method, the segmentation results of conventional
region growing and the constrained region growing are compared against radiologist’s outlines of the masses as
shown in Figure 4. The screening database of masses with a total of 20 visible masses was employed.

T,

e and Tm in (5) is unknown. Tim is determined by the mean intensity of the surrounding pixels of the

seed(M ,,, ). T,,, is empirically chosen as 0.025X M __, in our experiment. A value of 0.5 is chosen to be T,,.
For each mass, the seed point was selected within the radiologist’s outline. Once the mass was segmented. an

overlap O was calculated:

0= area(S mT) . (6)
area(S UT)
where § is the segmented mass and T is the radiologist’s hand-drawn segmentation result. The value of O is
between 0 (no overlap) and 1 (exact overlap). To evaluate the segmentation result, we need to choose a threshold
for an “adequate” segmentation. If O is greater than a certain value, the mass is considered to be correctly
segmented. Figure 5 shows a plot of the fraction of masses correctly segmented at various overlap threshold levels.
The graph-based region growing algorithm substantially outperformed the conventional region growing. At an

overlap threshold of 0.3, conventional region growing correctly identified 50% of the lesions in our database, while
the graph-based segmentation methods correctly segmented 90% of the masses.

Conventional region growing Graph based region growing

1 [ o RO ¥ T T 1 4
R RE 2 K i '
09 F Hompomt g 0.9
N oy ; N
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ol T e T R T 0.7
§ 06 F=ri-miNTi ST £ 06
= . W L .0
c 05 F - e S 05
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Figure 5. Results for the methods using the overlap evaluation. The left figure shows the results of conventional region growing. The
right figure shows the results for the graph-based region growing,
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5. CONCLUSION

We have developed a new method of seeded mass segmentation for use in digital mammography. This
new method substantially outperforms conventional region growing segmentation. At an overlap threshold of 0.3,
conventional region growing correctly identified 50% of the lesions in our database, while the graph-based
segmentation methods correctly segmented 90% of the masses. This method can be potentially applied to the
discrimination between benign and malignant masses, because the spiculation feature can be effectively preserved
in segmentation. However, there are still some rooms for improvement. For example, this method does not work
well yet for large mass. Extensive testing and evaluation is needed with this method.
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Hybrid Classification Method for False-Positive Reduction
in CAD for Mass Detection
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INTRODUCTION

Computer-aided diagnosis (CAD) has been proposed as a “second opinion” or a
“pre-reader” strategy to improve mammogram interpretation (Giger 1993).

detection, mass detection clearly poses a much more difficult problem and usy-
ally generates more false-positive (FP) signals in detection because masses are
often (a) of varying characteristics in size, shape. and density; (b) exhibit poor
image contrast in breast with high density tissue: (¢) have a similar characteris-
tics to the nonuniform dense tissue background; and (d) highly connected to the
parenchymal tissue, particularly for spiculated mass.

Numerous investigators have addressed mass detection and classification in
the past several years (Karssemeijer et al. 1996, Lj et a]. 1999, Petrick et al. 1996.
Yin et al. 1991, Zheng et al. 1995). The detection process usually consisted o
three major steps: preprocessing, localization, and classification. Most of the
proposed research has been directed to the first two CAD modules and the fea-

true-positive regions in the CAD environment. In this paper, we propose a new
approach to classification. Its basic strategy is to improve the classification per-
formance in cases with more false-positive signals by using “soft” decision
making.

HYBRID CLASSIFICATION METHOD

The major difficulties of classification result from the great similarity in
appearance between masses and dense normal tissue, and the great variation
in feature distribution of different masses. From the classification perspective,
the former requires more elaborate features to be extracted for classification
while the latter means the classifier structure should be more flexible. Here
we focus on the exploration of new classification strategy with less effort on
new feature design.
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Feature Extraction

Seven features are used in this work for FP reduction. They are similar to that
we reported before except that (a) one more mixed boundary-intensity feature
is added, and (b) the calculation of some features is modified with more rea-
sonable definition (Li et al. 1997). Due to page limitations, they are simply listed
as follows:

Morphological features: (i) Area; (ii) Circularity; (iii) Normalized deviation of radial

length.

Intensity features of region: (i) Intensity variation; (ii) Mean intensity difference.

Intensitv features of boundary: (i) Mean gradient of region boundary; (ii) Mean inten-
sity difference along region boundary.

Hybrid Classification

There are several types of classifiers used in discrimination of masses from
normal tissue regions, such as decision tree (Kegelmeyer et al. 1994), Bayes clas-
sifier (Brzakovic et al. 1990), neural networks (Sahiner et al. 1995, Lo etal. 1998),
linear discriminant analysis (LDA) (Chan et al. 1995), and quadratic classifiers
(Woods et al. 1994). A common characteristics of current FP reduction schemes
'« -hat a “hard” discriminant criteria is developed by training to evaluate each
segmented suspicious region. From the standpoint of region-based classification,
it is reasonable, and the task of classifier design is to find an optimal discrimi-
nant hyperplanc in feature space. However, the segmented FPs cannot be
reduced efficiently by a single “hard” decision classifier. With an analysis of
“hard” decision-making classification results, it can be found that the distribu-
tion of FPs is quite different from case to case, generally less FPs for fatty breast
and more FPs for dense breast in which more mass-like regions are segmented.
in other words, from the image-based standpoint, the efficiency of classification

r:-egy by means of “hard” decision criteria is questionable. The proposed
.vbrid classification method takes two different decision-making strategies as
described below, where the current “hard” decision classifier is cascaded with
asoft” decision classification with the objective to reduce FPs in the cases with
multiple FPs retained after the “hard” decision classification.

“Hard” Classification Using a Modified Fuzzy Decision Tree Method

I'he segmented regions are first classified using a modified fuzzy decision tree
'*1FDT) method. It is a modification of our previously developed fuzzy binary

i n tree (FBDT) method (Li et al. 1997), in which the classification decision
+ ach tree node is made based on the region feature as well as region size. The
“’4"51?,11 of MFDT structure is based on an observation that the feature distribu-
tions are statistically different for different mass size.

"Soft” Classification Using Committee Decision Method

:):1 "bard” classification method is region-oriented. The thresholds at the decision
nodes of MFDT are selected by training to ensure a high detection sensitivity.
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However several FPs in each image may be produced especially for that with
non-uniform high density tissue. The “soft” classification strategy proposed is
to reduce FPs by an image-based analysis for selecting the best ones among the
pre-classified candidate regions as the “real” masses. It is performed by a com-
mittee decision method based on a simple premise that most features of a mass
should be top in individual feature ranking among all the candidate suspicious
regions in a single mammogram (Black 1963).

The committee consists of six “experts”; each provides a ranking list of the
suspicious regions with a likelihood to be a mass using a single feature except
the feature “Area.” A region is decided by the committee to be a possible mass
if it is ranked among top K, (K, < M) by more than C, “experts.”

Mathematically, it can be described as follows:

For a region i among M candidate regions, its ranking value by feature j is

ril=k, ke [1, M] (1)

if feature j of region i is at the order k among M regions.
The committee score of region i is defined as

N .
c,=Sulr") (2)
j=1
where
a1 k<K, .
- Rk @

and K|, is an order threshold, N is the “expert” number.

The region i is classified to be a mass if C, 2 C,, i.e. more than G, “experts”
vote region i for mass class provided they can select K regions from all Mregions
as candidate masses. The maximum number of “mass” in each image is

MX=max{[k°;N],M} (4)

where [#] is the operation of taking maximum integer value.

EVALUATION

A comparative evaluation of false-positive reduction by means of a “hard” decision
classifier and a hybrid “hard”-“soft” decision classifier was performed using a
database consisting of 30 normal and 49 abnormal mammograms with a total of
74 masses. The electronic truth file was formed for each abnormal mammogram
where the masses were labeled by an expert mammographer based on visual cri-
teria and biopsy results. :
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The evaluation was taken in three steps. First, a detection result was obtained
by our CAD detection system with only “hard” classification working at its
trained operating point. Figure 1 shows the distributions of image and their
group-average false positive rate versus false-positive signal numbers on the
image. Its corresponding accumulative distributions of FPs versus two differ-
ent image percentages is shown in figure 2. It is observed that the generated FP
number is quite different from case to case. Some cases do not have any FPs in
detection but some cases generated more than 10 FPs per image. One-third of
the cases account for almost two-thirds of all FPs in detection. The second step
is to evaluate the FP reduction with “hard” classification by increasing the
threshold value of classifier. Figure 3 shows the distributions of image and their
corresponding average FP rate. Compared to figure 1, the percentage of images
with lower FP is increased, which means some FPs are removed in the cases with
higher FP number. Figure 4 shows the distribution of FP rate and its FP reduc-
tion of each image group with different numbers of FPs. It is observed that
although the overall average FP rate is reduced (from 4.16 to 3.08 per image in
whole database) and the average reduction in images with higher FP incidence
is more than that in lower FP images, the distribution of FPs remains very
uneven. The 17.7% cases with higher FP numbers (more than 5 FPs) generated
almost half of all the FPs. Furthermore, this very limited FP reduction is obtained
at a large cost of 14% loss of detection sensitivity. The third step of evaluation is
taken on the proposed hvbrid classification scheme in which the “hard” classifier
is cascaded with a novel “soft” classification. Figure 5 shows the distributions
of images and their corresponding average false-positive rate versus false-positive
signal number in each of the images after “soft” classification. A significant change
of image distribution is observed, where no image has an output with more than
5 FPs. For a comparison with the result of single “hard” classification, a distri-
bution of FP rate and its FP reduction in each image group is shown in figure 6.
It is observed that. compared to the FP reduction scheme with increased threshold
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Figure I. Images and their corresponding average false positive rate distributions versus
false-positive signal numbers after initial “hard” classification.
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Figure 2. Accumulative distribution of FPs versus two different image percentages.
(a) Beginning from the low FP image group, (b) Beginning from the high FP image group.
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Figure 3. Images and their corresponding average false positive rate distributions after
FP reduction with a loss of 14% TP rate by using “hard” classification with increased
threshold.

“hard” classification, a much bigger false-positive reduction is achieved in the
images with more FP detection signals. The final average detection FP rate in
the whole database is reduced to 2.24 with only 1% loss of detection sensitivity.
The distribution of FP rate in different image groups is more uniform, which
means most of the images generate a similar number of FPs except for the ones
with very few FPs. This result demonstrates that “soft”-decision classification
can effectively remove the FPs in higher FP incidence cases with less impact on
the images with less FPs for securing a high sensitivity.
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Figure 4. Distribution of false positive rate and its FP reduction at a loss of 14% TP rate
by threshold-increased “hard” classification.
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Figure 5. Images and their corresponding average false positive rate distributions after
FP reduction with a loss of 1% TP rate by using “soft” classification with increased
threshold.

CONCLUSION

This paper proposes a new classification scheme by introducing a “soft” deci-
sion strategy in FP reduction. This new decision-making method provides a
flexible criteria in each mammogram. The classification is image-based as
opposed to region-based in “hard” classification. The evaluation results have
demonstrated its efficiency. Compared to the conventional (region-based) clas-
sification. a higher FP reduction can be achieved with less loss of detection
sensitivity. However, it should be pointed out that an optimal classification can
only be made with “optimal” features and “optimal” classifiers. To have a better
FP reduction performance, further studies will be taken including (a) optimal
feature selection for hybrid classification, and (b) optimized combination of
“hard” and “soft” classifiers.
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Figure 6. Distribution of false positive rate and its FP reduction at a loss of 1% TP rate
by “soft” classification.
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Improving mass detection by adaptive and multi-scale processing
in digitized mammograms
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ABSTRACT

A new CAD mass detection system was developed using adaptive and multi-scale processing methods for
improving detection sensitivity / specificity, and its robustness to the variations in mammograms. The major
techniques developed in system design include (a) image standardization by applying a series of preprocessing to
remove extrinsic signal, extract breast area, and normalize the image intensity; (b) multi-mode processing by
decomposing image features using directional wavelet transform (DWT) and non-linear multi-scale representation
using anisotropic diffusion (AD); (¢) adaptive processing in image segmentation using localized adaptive
thresholding (LAT) and adaptive clustering (AC); and (d) combined "hard"-"soft” classification by using a
modified fuzzy decision tree and committee decision-making method. Evaluations and comparisons were taken
with a training dataset containing 30 normal and 47 abnormal mammograms with totally 70 masses, and an
independent testing dataset consisting of 100 normal images, 39 images with 48 minimal cancers and 25 images
with 25 benign masses. A high detection performance of sensitivity TP=93% with false positive rate FP=3.1 per
image and a good generalizability with TP=80% and FP=2.0 per image are obtained.

Keywords: Mass Detection, Adaptive, Multi-Scale Processing, Classification

1. INTRODUCTION

Breast cancer is the second leading cause of cancer death among American women. The American Cancer
Society projects 181,600 new cases and 44,190 deaths from breast cancer in 1997 [1]. There is considerable
evidence that early diagnosis and treatment of breast cancer can significantly increase chances of survival. Of all
screening methods currently available, mammography is the most reliable and has demonstrated its benefit in the
early detection of breast cancer with monality reduction of 20-40% [2]). However, because mammogram
interpretation is performed by radiologists by visual examination of the films for the presence of abnormalities that
may be malignant, the shortage of radiologists and the large volume of mammogram to be analyzed, most of which
are normal, make such readings labor intensive, cost ineffective, and often inaccurate. Similarly there is significant
inter- and intra-variability in reading mammogram. Studies indicate that, of the breast cancers that are visible in
retrospective studies, 10 to 30% are missed during mammographic interpretation, and 40% of the missed cancers
appear as masses on the mammogram [3]{4]). The missed lesions can be caused by a number of factors, but a
significant percentage have been attributed to subjective or varying decision criteria , distraction by other image
features, or simple oversight. In an attempt to reduce the cost and increase the effectiveness of mammography,
alternative techniques and systems have been developed to improve mammographic imaging and interpretation,

-among which computer-aided diagnostic (CAD) method is a low cost and efficient approach [5]. There are several

examples in the literature of increasing lesion detection through the use of CAD methods [6][7]. However, to date,
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there is few practical CAD system for clinical use because (a) they have not achieved sufficient performance
(sensitivity and specificity); (b) they have poor reproducibility and adaptivity, i.e. have a great variation in
performance for different mammograms at different time and/or sites; (c) their required processing is usually not
cost-effective. This paper addresses the first two problems described above in mass detection aiming at improving
its detection performance and robustness by making the CAD method adaptive and more generalizable.

2. DETECTION METHOD

The new mass detection system is a modification of our previously developed wavelet based detection method
by using some novel techniques such as adaptive, nonlinear multiscale processing and hybrid classification
methods. Figure 1 shows the schematic diagram of the proposed mass detection system. It is a modular structure
and explained as follows.

2.1. Preprocessing

The images used in CAD algorithm design and testing are obtained mostly by scanning clinical screen film
mammograms with digitizers. Due to the difference in film resources and digitizers, and the variation of imaging
procedure and characteristics of digitizer, the appearance of digitized images may have a great difference. To
reduce the influence of non-breast signals on mass detection, the digitized mammograms are "standardized" by

a series of preprocessing of breast area extraction, removal of Be-Be mark, noise suppression and image intensity
normalization.

2.2. Feature Decomposition Using Directional Wavelet Transform

Different types of masses tend to be of different image appearance and characteristics. For most of masses, they
are primarily related to the region feature. However, for architectural distortion and spiculated masses, their
important signs are reflected as directional feature as well as their regional features. Although, for a systematic
detection purpose, it will be a great help to utilize both types of features, each may be a "trouble" for another if
they are not deait with appropriately. For example, spiculation is an important feature for detection of stellate mass
and classification of malignancy, but it frequently results in the connection of central mass area to surrounding
tissue area in mass segmentation. More often is the case when vessels overlap on mass in the projected image,
which complicated the segmentation of suspicious regions. Therefore, it is necessary to decompose the
mammographic image into a region-based image and line-based image so that each can be processed more
efficiently. Directional wavelet transform proposed in our previous work is used here to decompose the
mammogram feature [8][9]. For an input mammographic image, two output feature images are obtained: one is
a directional texture image, another is the smoothed version of original image.

2.3. Multi-Scale Representation of Mammogram

A multi-scale representation of a signal is an ordered set of derived signals intended to represent the original
signal at different levels of scale. A major reason for multi-scale representation is to explicitly represent the multi-
scale aspect of the data, and to Suppress and remove unnecessary and disturbing details such that the later stage
processing tasks can be simplified [10]. Due to fact that the appearance of masses in mammograms has a great
variation in size, shape, intensity contrast and intensity variation inside masses, multi-scale description of
mammograms can hopefully be effective in revealing the features of different kind of masses at different scale
levels, which provides the basis for further multi-mode processing. Anisotropic diffusion (AD) is a "semantically
meaningful" multi-scale description method [11], and is used for mammogram processing in this work.
' The multi-scale representation of image can be considered to be a series of "smoothing" operation, where each
'smoothing" operation can be formulated as a diffusive process,

-aa-tnx,y, £) =A (c(x, v, t))VI(x,y,t) (1)
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with initial condition I(x,y,0)=I{x,y) be the original image. The diffusion strength is controlled by C(x,y,t) where
(x,y) is the coordinates of image, t is the scale-space parameter. Two typical functions are [11]:

cexp (— ( |IVI(x,y,¢t)] )2)

c, (%, y,t) E (2)
1
C y vV, tl= >
2 (X, ¥, t) NIy, 0 e 20 (3)
1+ 2 )

where parameter K is chosen according to noise level and edge strength.

To generate different scale representations using AD, we need to determine the diffusion function C(*),
parameter K in C(*), and the iteration number of diffusion process. Because the flow function with C, has a better
manageable "band-pass” and edge preservation property, C,(x,y,t) is used as the diffusion function in this work.
The parameters K and t are selected empirically, larger for the representation of mammographic image with large
mass and vice versa. In this work, two scale images are generated using the AD method, one is of small scale
features which is suitable for detection of small to medium size masses; the second is directed to reveal large scale
feature and suppress small regions which will be of a help in detection of large-size masses. Fig. 2 shows the 3-D
images of region-of-interest (ROI) of a mammogram containing a small and large mass respectively. Their small
scale and large scale representations are shown for comparison in Fig. 2. It is demonstrated that different masses
can be effectively enhanced with different scale representations.

2.4. Adaptive Segmentation

A region-based detection approach is taken in this method where all the suspicious regions are first separated
from fat and glandular normal tissues using image segmentation techniques.

Step 1: Localized adaptive thresholding

Since mass is generally radiographically denser than surrounding tissue, the locally bright spot of appropriate
size is extracted by an initial segmentation using a localized adaptive thresholding method. For each pixel I(x,y)
in breast area, a decision is made to classify it into a potential mass pixel class (class 1) or a normal pixel class
(class 2) by the following rule:

I(x,y) € Suspicious if I(x,y) > TH(x,y) 4
I(x,y) € Normal  if I{x,y) < TH(x,y) &)

where TH(x,y) is an adaptive threshold value calculated by
TH(x,y) = M(x,y) + @ ( Inu(%y) - In(X,y) ) (6)

where M(x,y) is an average of the pixel intensity in small window around pixel I(x,y); 1,,,(x,y) and I _;(x,y) are
the maximum and minimum intensity value in large window as illustrated in Fig. 3; « is a thresholding bias
coefficient and is chosen empirically.

To overcome the difficulty of segmentation of masses due to a large variation in size and contrast, two-mode
segmentation is performed on the output of multi-scale representation, one is specifically tuned to small-medium

'size mass (mode S), the other is for medium-large mass segmentation (mode L.).

Step 2. Relaxation of segmentation using adaptive clustering




Localized adaptive thresholding provides an efficient approach to separate the potential abnormal pixels
especially for low contrast regions. However, because the localized adaptive thresholding is a pixel-based
operation, the segmented pixels are usually not well grouped. With localized adaptive thresholding as its initial
segmentation, a relaxation process by adaptive clustering is used to refine the segmentation [12], in which the pixel
classification is updated by incorporating local spatial context constraints in the conventional gray-level clustering,
It is an iterative process:

(a) with the initial segmentation, calculate an estimate of confidence in the segmentation at each pixel;
(b) for each pixel, modify the segmentation and the confidence estimate based on the pixels in local region;
(c) repeat (b) until the segmentation is completed.
The confidence estimate of a pixel I(x,y) to be a suspicious one (class 1) and normal one (class 2) at i-th
iteration can be described respectively as:

classi: p Y =expl-(1(x,y) -m? (x, y) ) 2+pN (x,y) ) (7)
Class2: P =expl- (1(x,y) -m® (%, y) )2+BND (x, y)} (8)
where
ml‘“=-i Y 1k, 1) (k,1)€B,(x,y) n I(k,1)€ Class 1 (9)
n, (xn
m;ig%(ﬂ) I(k,1) (k,1)€B,(x,y) n I(k,1)€ Class 2 (10)

N,%x,y) and N,%(x,y) are the number of pixels belonging to Class 1 and Class 2 in the 8-connection
neighborhood of I(x,y) respectively. B (x,y) is a pre-defined neighbor area and decreasing with iteration. The
constraint coefficient is $=20% where o2 is an estimate of noise variance.

The update of pixel label of I(x,y) is performed according to following rule:

I(x,y) updated to be Class 1, if p,% > p,® an
I(x,y) updated to be Class 2, if p,? < p,® (12)

The relaxation process continues until a criteria is met, such as the number of changed pixels less than a
threshold T,, and / or the iteration number of relaxation greater than a threshold T,

2.5. False-Positive Reduction

A common approach to reduce the FP rate is to perform a further feature analysis of the segmented regions
and use a classifier to discriminate masses from normal tissue region. The major difficulties of classification result
from the great similarity in appearance between mass and dense normal tissue, and the great variation in feature
distribution of different masses. From the classification perspective, the former requires more elaborate features
to be extracted for classification while the later means the classifier structure should be more flexible. In this
paper, we focus more on the exploration of new classification scheme with less effort on new features design.

Seven features are used in this work for FP reduction including Area, Circularity, Normalized deviation of
radial length, Intensity variation, Mean intensity difference, Mean gradient of region boundary, Mean intensity
difference along region boundary. They are similar to that we reported before [9] except that (a) one more mixed
~ boundary-intensity feature is added; (b) the calculation of some features is modified with more reasonable
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definition.

There are several types of classifiers used in discrimination of masses from normal tissue regions, such as
decision tree [13], neural networks [14], linear discriminant analysis (LDA) [15]. A common characteristics of
these FP reduction schemes is that a "hard" discriminant criteria is developed by training to evaluate each
segmented suspicious region. From the standpoint of region-based classification, it is reasonable, and the task of
classifier design is to find an optimal discriminant hyperplane in feature space. However, due to the fact that (1)
the mammogram characteristics is usually quite different from case to case; (2) there is a great variation of feature
among masses; (3) there is a great similarity between mass and normal tissue regions, the segmented FPs can not
be reduced efficiently by a single "hard" decision classifier.

A hybrid classification method is proposed as follows, where the segmented regions are first classified using
a modified fuzzy decision tree (MFDT) method. It is a modification of our previously developed fuzzy binary
decision tree (FBDT) method [9]. The "hard" decision classifier is then cascaded with a "soft" classification with
the objective to reduce FPs in the cases with multiple FPs retained after the "hard” decision classification by an
image-based analysis for selecting the best ones among the pre-classified candidate regions as the "real" masses.
It is performed by a committee decision method based on a simple premise that most of features of a mass should
be top in individual feature ranking among all the candidate suspicious regions in a single mammogram [16].

2.6. Combination of Results

There is a great difference of the detected suspicious regions in size and shape from two processing modes.
Generally, the small scale processing mode produces more and small detected regions while the large scale
processing mode produces fewer and large detected regions. In order to get a single detection output, the detection
results from different processing modes have to be combined. In this work, following scheme is proposed for
results combination: Taking the detection results from large-scale mode as the major result, using small-scale
detection as a reference. For a detected region from small-scale mode, if there is a detection region from large
scale mode having a common detection area, we will take the later as the output while discard the former one.
On the other hand, for a detection region from small-scale mode, if there is not a detection region from large-scale
modes having a common detection area, we will take it as the detected region for output.

3. DATABASES AND RESULTS

Two image datasets are generated for mass detection system design and testing. The training dataset contains
30 normal and 47 abnormal mammograms with totally 70 masses. It has the same cases as before for the training
of last version of detection algorithm, where the mammograms were digitized by an ImageClear R3000 digitizer
(DBA System Inc., Melbourne, FL), so that a comparison of detection performance on training database can be
made. The testing dataset was generated independently, consisting of 100 normal images, 39 images with 48
minimal cancers and 25 images with 25 benign masses. It can only be accessed for final testing of algorithm.

The mass detection system is first evaluated with the training database. Fig.4 is a detection FROC curve. The
operating point of system is chosen to be at sensitivity TP=93% and false positive rate FP=3.1 per image as
indicated in Fig. 4. It is then tested independently using the testing database. A good generalization performance
was obtained with TP=80% and FP=2.0 per image. Two representative mammograms and their detection results
are shown in Fig. 5. By analyzing the five masses missed in training at the detection operation point, two of them
are due to extremely small size (<4 mm) and lower contrast (<4.0); another two of them are on the boundary of
breast area where the intensity value decreases dramatically caused by the reduction in thickness at the margin of
the compressed breast; one is due to its great deviation of shape feature. Among the testing outputs, a higher
detection sensitivity is obtained for benign masses (88%) than that for minimal cancers (75%) at a similar false-
positive rate. Again two of the major causes of missing in mass detection are mass located on boundary and lower

contrast. In addition to that, a high intensity MCC inside mass is a great interference for mass detection because

it results in a great deviation of intensity-related feature values: the masses with too big size could not be detected
in testing even though it is not a significant issue from the point of view of CAD.



4. DISCUSSION AND CONCLUSION

The great variation of characteristics of mammograms and masses hinders us in developing a high detection
performance and more generalizable CAD system. The typical variations between different mammograms result
from either the imaging process (such as film exposure, film label), digitization process (such as spatial / intensity
resolution, response function to optical density), and most importantly the inherent breast tissue characteristics.
The variations of masses include its size, contrast, shape, location, intensity pattern and its relation to the
surrounding tissues. The CAD mass detection method described in this paper proposed a systematic approach to
address these problems including (a) image standardization strategy by applying a series of preprocessing to
remove extrinsic signal, extract breast area, and normalize the image intensity; (b) multi-mode processing strategy
by decomposing image features and multi-scale representation; (c) adaptive processing strategy in localized image
segmentation; and (d) combined "hard"-"soft" decision making strategy by using a modified fuzzy decision tree
and competitive classification neural network. Compared to the CAD mass detection method we developed earlier,
a great improvement is made both in detection performance and generalizability.
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Fig. 1 A schematic diagram of the proposed mass detection system
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Fig. 2 Nonlinear multi-scale representation of two mammographic ROIs. (a) is 2 3-D image of the ROI with a small
mass (as the arrows indicated), (b) and (c) are its representations at two different scales; (d) is 2 3-D image of the RO}
with a large mass (as the arrows indicated), its representations at the same scales as that of (b) and (c) are shown in (e)

and (f) respectively.
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Fig. 5 Two representative mammographic images (preprocessed) and their detection results.




